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Abstract
Fast Fourier convolution (FFC) is the recently proposed neural
operator showing promising performance in several computer
vision problems. The FFC operator allows employing large re-
ceptive field operations within early layers of the neural net-
work. It was shown to be especially helpful for inpainting of pe-
riodic structures which are common in audio processing. In this
work, we design neural network architectures which adapt FFC
for speech enhancement. We hypothesize that a large receptive
field allows these networks to produce more coherent phases
than vanilla convolutional models, and validate this hypothesis
experimentally. We found that neural networks based on Fast
Fourier convolution outperform analogous convolutional mod-
els and show better or comparable results with other speech en-
hancement baselines.
Index Terms: speech enhancement, fast fourier convolution

1. Introduction
Speech enhancement is of major interest in the audio processing
community, as it has a fundamental importance in telecommu-
nication. There are a lot of solutions for this problem in tradi-
tional signal processing, but each such solution relies on some
assumptions on the underlying noise model. Due to the recent
advances in deep learning, data-driven approaches have domi-
nated the area of modern speech enhancement.

One popular line of deep learning techniques tackling
speech enhancement is based on the time domain signal re-
trieval. These approaches often utilize a convolutional encoder-
decoder (CED) structure. For example, [1] and [2] follow an
adversarial training pipeline and use a CED network as a gener-
ator employing a fully-convolutional discriminator for training.
Some of these approaches additionally use neural modules that
can capture long-range temporal sequence information, such as
long short-term memory cells [3] and transformers [4]. How-
ever, since these techniques directly map a noisy waveform to
the clean one, they typically leave aside any information about
signal spectrum, causing potential inefficiencies. One recent
attempt to explicitly take into account spectral information dur-
ing generation is [5]. The authors propose a universal model for
vocoding, speech enhancement and bandwidth extension that
takes as inputs both waveform and spectrogram and achieves
state-of-art results. We show that the quality of speech enhance-
ment can be further improved by our models.

Another line of research is built upon the estimation of
short-time Fourier transform (STFT) representations. Ap-
proaches of these lines aim to predict STFT coefficients of clean
signal directly [6] or correct spectrum of the noisy signal by es-

timating various masks for modification of magnitudes or both
magnitudes and phases [7, 8, 9]. For instance, MetricGAN [10]
and MetricGAN+ [11] papers use Bidirectional LSTM to pre-
dict binary masks for spectrogram optimizing common speech
quality objective metrics directly and report state-of-the-art re-
sults for these metrics. The direct estimation of phases is chal-
lenging. Different tricks are proposed to simplify this task.
These techniques include decoupling magnitude and phase es-
timation [12] and the usage of separate vocoder networks for
waveform synthesis [13]. However, these methods tend to use
large neural networks, requiring substantial computational re-
sources. We found that one of the limiting factors for phase
prediction is local receptive field of these networks, preventing
effective use of models parameters. We observed that phase
estimation can be significantly facilitated by non-local neural
operators, leading to much smaller model sizes while achieving
better quality.

We propose new neural architectures based on fast Fourier
convolution (FFC) operator [14] which we adapt for speech
enhancement problems. The FFC layers were originally pro-
posed for computer vision tasks as a non-local operator replac-
ing vanilla convolutional layers within existing neural networks.
Fast Fourier convolution has the global receptive field and was
shown to be helpful for the restoration of periodic backgrounds
in inpainting problems [15]. These properties of FFC are espe-
cially helpful for the complex spectrum prediction. Indeed, the
harmonics of spectrogram are known to form periodic structures
which can be naturally handled by fast Fourier convolution (see
Figure 1). Besides, we experimentally observe that a large re-
ceptive field of FFC is useful for producing coherent phases.
Based on these insights, we design new neural architectures
for direct complex-valued spectrogram estimation in speech en-
hancement problems. The proposed models achieve state-of-
art performance on VoiceBank-DEMAND [16] and Deep Noise
Suppression [17] datasets with much fewer parameters than the
baselines. The implementation will become publicly available.

STFT FFT1d

Figure 1: Harmonics of short-time Fourier transform constitute
periodic structures which can be naturally processed in Fourier
domain by global branch of fast Fourier convolution.
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2. Proposed method
We consider the standard single-channel speech denoising prob-
lem. In other words, our goal is to learn a mapping from noisy
waveform y = x + n with additive noise n to the clean one x.
We tackle this problem by neural architectures equipped with a
non-local neural operator named fast Fourier convolution [14].
We adapt this operator for complex spectrum processing and
propose two neural architectures which use this operator as a
basic block.

2.1. Fast fourier convolution

Fast Fourier convolution (FFC) [14] is a neural operator that
allows performing non-local reasoning and generation within a
neural network. FFC uses channel-wise fast Fourier transform
[18] followed by a point-wise convolution and inverse Fourier
transform, thus it globally affects input tensor across dimen-
sions involved in Fourier transform. FFC splits channels into
local and global branches. The local branch uses conventional
convolutions for local updates of feature maps. Global branch
performs Fourier transform of the feature map and updates it in
spectral domain affecting global context.

In this work, we perform Fourier transform across fre-
quency dimensions of feature maps (corresponding to STFT
representations) only (see Figure 1), whereas in computer vi-
sion the Fourier transform is applied across both image dimen-
sions [14, 15]. Specifically, we implement the global branch of
the FFC layer in three steps:

1. Apply real fast Fourier transform across frequency di-
mension of the input feature map and concatenate real
and imaginary parts of spectrum across channel dimen-
sion:

RC×F×T fft1d−→ CC×F/2×T concat−→ R2C×F/2×T .

2. Apply convolutional block (with 1×1 kernel) in the fre-
quency domain:

R2C×F/2×T conv−bn−relu−→ R2C×F/2×T .

3. Apply inverse Fourier transfrom:

R2C×F/2×T concat−→ CC×F/2×T ifft1d−→ RC×F×T .

where C, F , T are the number of channels, dimension corre-
sponding to frequency and dimension corresponding to time,
respectively. Global and local branches interact with each other
through summation of activations, as illustrated in Figure 2. We
use the same variation of FFC that was explored in [15] for im-
age inpainting, except we utilize one-dimensional Fourier trans-
form across the frequency dimension.

2.2. FFC-AE

We implement two neural network architectures for speech en-
hancement. The first one (FFC-AE) is inspired by [15]. This
architecture consists of the convolutional encoder (strided con-
volution) which downsamples the input STFT representation
across time and frequency dimensions by a factor of two. The
encoder is followed by a series of residual blocks, each con-
sisting of two sequential fast Fourier convolution modules. The
output of residual blocks is then upsampled by transposed con-
volution and used to predict real and imaginary parts of the
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Figure 2: Fast Fourier Convolution neural module for speech
enhancement. Parameter α ∈ [0, 1] controls the ratio of chan-
nels used in the global branch of the module.

denoised complex-valued spectrogram. The architecture is de-
picted on Figure 3 (left). We call this model fast Fourier convo-
lutional autoencoder (FFC-AE).

Although bigger downsampling factors lead to a further re-
duction in the number of operations during inference, we found
that it also leads to significant performance degradation, while
factor 2 provides a good trade-off between performance and
complexity for STFT with window size of 1024 and hop length
of 256.

2.3. FFC-UNet

The second architecture is inspired by the classic work [19].
We incorporate FFC layers into U-Net architecture as shown in
Figure 3 (right). At each level of the U-Net structure, we utilize
several residual FFC blocks with convolutional upsampling or
downsampling. We find it beneficial to make the parameter α
(ratio of channels going to a global branch of fast Fourier con-
volution) dependent on the U-Net level at which FFC is used.
Higher levels of U-Net structure work with higher resolutions of
data at which periodic structures are present, while lower lev-
els work at a coarse scale that lacks periodic structure. More
generally, as noted in [14] the deeper layers of neural networks
are mainly supposed to exploit local patterns, while the topmost
layers highly demand contextual inference. Thus, the global
branch of FFC layers is less useful at the coarse scales and we
decrease the parameter α starting from 0.75 at the topmost level
to 0 at the bottom layer with step 0.25.

2.4. Training

The predicted STFT representation is converted into waveform
by inverse short-time Fourier transform. We use the multi-
discriminator adversarial training framework proposed in [5]
for time-domain models’ training. It consists of three losses,
namely LS-GAN loss LGAN [20], feature matching loss LFM

[21, 22], and mel-spectrogram loss LMel [23]:

L(θ) = LGAN (θ) + λfmLFM (θ) + λmelLMel(θ) (1)
L(φi) = LGAN (φi), i = 1, . . . , k. (2)
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Figure 3: Proposed architectures for speech enhancement. Left: fast Fourier convolutional autoencoder which adopts architecture
introduced in [15] for speech enhancement task. Right: fast Fourier convolutional U-Net. Parameter in ch controls the overall width
of the networks, N defines the number of FFC residual blocks, K is the depth of the FFC-UNet architecture, α (real number ∈ [0, 1] in
case of FFC-AE, K numbers ∈ [0, 1] in case of FFC-Unet) controls the proportion of channels going to the global branch.

where L(θ) denotes loss for generator with parameters θ, L(φi)
denotes loss for i-th discriminator with parameters φi (all dis-
criminators are identical, except initialized differently). In all
experiments we set λfm = 2, λmel = 45, k = 3.

3. Experiments and Results
3.1. Datasets

We use two benchmarks for the evaluation of the effectiveness
of the proposed speech denoising models. All audio recordings
were sampled at 16 kHz.

The first one is VoiceBank-DEMAND dataset [16] which is
a standard benchmark for speech denoising systems. The train
set consists of 28 speakers with 4 signal-to-noise ratios (SNR)
(15, 10, 5, and 0 dB) and contains 11572 utterances. The test
set (824 utterances) consists of 2 speakers unseen by the model
during training with 4 SNR (17.5, 12.5, 7.5, and 2.5 dB).

The second benchmark is the Deep Noise Suppression
(DNS) challenge [17]. We synthesize 100 hours of training
data using provided codes and default configuration. The only
modification is that we do not utilize artificial reverberation dur-
ing synthesis. The models are tested on two kinds of test sets.
The first one (DNS-INDOMAIN) is a hold-out data randomly
selected and excluded from synthesized 100 hours of training
data. The second one (DNS-BLIND) is a standard blind test set
from the DNS repository. This data is recorded in the presence
of noise in real-world scenarios.

3.2. Metrics

Objective metrics We use conventional metrics WB-PESQ
[25], extended STOI [26], scale-invariant signal-to-distortion
ratio (SI-SDR) [27], COVL, CBAK, CSIG [28] for objective
evaluation of samples in the concerned tasks. Metrics for all
baselines and our models were calculated using the publicly
available implementations and were not reused from original

papers. In addition to conventional speech quality metrics, we
considered absolute objective speech quality measure based on
direct MOS score prediction by a fine-tuned wav2vec2.0 [29]
model (WV-MOS), which was found to have better system-level
correlation with subjective quality measures than the other ob-
jective metrics [5].
Subjective metrics We use 5-scale MOS tests for subjective
quality evaluation following procedure described in [5]. All au-
dio clips were normalized to prevent the influence of audio vol-
ume differences on the raters. The referees were restricted to be
English speakers with proper listening equipment.

3.3. Experimental Setup

In all our experiments, signals are transformed to the spectral
domain using STFT with Hann window of size 1024 and hop
size 256. For FFC-AE model we set α = 0.75, N = 9,
in ch = 32 and in ch = 64 for V0 and V1 versions, respec-
tively. For FFC-UNet K = 4, N = 4, in ch = 32 and α
is gradually decreased with depth as described in Section 2.3.
Models are trained for 800 000 iterations with batch size being
equal to 8. Adam optimizer is used with learning rate 0.0002.
ResUNet-Decouple+ [12] was trained with the same loss func-
tion as reported in the original paper, the number iterations was
set 800 000 and learning rate to 0.0002.

3.4. Experimental Results

In addition to baselines from the literature [11, 12, 13, 5, 3, 6],
we compare against fully convolutional U-Net model (vanilla
U-Net) and a model which is the same as FFC-AE except for
all Fourier units at the global branch are replaced with vanilla
convolutions (FFC-AE (abl.)). These models follow exactly the
same training setup as the proposed models for a clear illustra-
tion of the FFC importance.
Phase estimation We test the ability of the FFC-AE model to
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Table 1: Speech denoising results on Voicebank-DEMAND dataset. Best three results are highlighted in bold.

Model MOS WV-MOS SI-SDR STOI PESQ CSIG CBAK COVL # Params (M)

Ground Truth 4.46± 0.06 4.50 - 1.00 4.64 5.0 5.0 5.0 -
Input 3.44± 0.06 2.99 8.4 0.79 1.97 3.34 2.82 2.74 -

MetricGAN+ [11] 3.82± 0.06 3.90 8.5 0.83 3.13 4.12 3.16 3.62 2.7
ResUNet-Decouple+ [12] 3.94± 0.04 4.13 18.4 0.84 2.45 3.38 3.15 2.89 102.6
DEMUCS (non-caus.) [3] 4.06± 0.03 4.37 18.5 0.87 3.03 4.36 3.51 3.72 60.8
VoiceFixer [13] 4.10± 0.03 4.14 -18.5 0.75 2.38 3.6 2.37 2.96 122.1
HiFi++ [5] 4.15± 0.07 4.27 18.4 0.86 2.76 4.09 3.35 3.43 1.7

FFC-AE-V0 (ours) 4.24± 0.09 4.34 17.9 0.86 2.88 4.25 3.40 3.57 0.42
FFC-AE-V1 (ours) 4.33± 0.03 4.37 17.5 0.87 2.96 4.34 3.42 3.66 1.7
FFC-UNet (ours) 4.28± 0.03 4.38 18.1 0.87 2.99 4.35 3.47 3.69 7.7

FFC-AE-V1 (abl.) 3.98± 0.07 4.05 16.7 0.84 2.68 3.94 3.23 3.31 2.9
vanilla UNet 4.10± 0.07 4.11 17.2 0.85 2.73 3.94 3.28 3.34 20.7

Table 2: Speech denoising results on DNS dataset. * indicates results on DNS-BLIND. Best three results are highlighted in bold.

Model MOS MOS* WV-MOS WV-MOS* SI-SDR STOI PESQ CSIG CBAK COVL # Params (M)

Ground Truth 4.40± 0.08 - 3.845 - - 1.00 4.64 5.0 5.0 5.0 -
Input 2.75± 0.07 2.43± 0.08 1.195 0.80 - 0.69 1.49 2.59 2.32 1.99 -

DEMUCS [3] 3.52± 0.15 2.94± 0.08 3.32 2.83 15.56 0.82 2.20 3.44 3.21 2.81 33.5
HiFi++ [5] 3.54± 0.08 2.75± 0.06 2.91 2.32 11.69 0.82 2.20 3.65 3.00 2.92 1.7
ResUNet-Dec+ [12] 3.63± 0.04 2.51± 0.08 2.94 1.86 14.78 0.81 2.09 2.82 3.06 2.43 102.6
FullSubNet [24] 3.73± 0.02 3.08± 0.09 2.90 2.41 14.96 0.82 2.43 3.59 3.27 3.0 5.6

FFC-AE-V0 (ours) 3.92± 0.09 2.88± 0.09 3.20 2.58 12.86 0.83 2.44 3.84 3.17 3.15 0.42
FFC-AE-V1 (ours) 4.02± 0.05 3.10± 0.07 3.33 2.76 14.12 0.85 2.61 3.98 3.31 3.31 1.7
FFC-UNet (ours) 4.00± 0.06 3.11± 0.08 3.35 2.70 15.48 0.86 2.69 4.08 3.44 3.41 7.7

estimate phases given spectrograms on the LJ-Speech dataset
[30] and compare against analogous architectures with vanilla
convolutions which in contrast to FFC do not have global recep-
tive fields. The models were trained to predict phases (sine and
cosine) by guidance of losses described in 2.4 and were pro-
vided with magnitude spectrograms. The results are shown in
Table 3. FFC-AE significantly outperforms FFC-AE (abl.) and
vanilla UNet models while having fewer parameters.

Table 3: Phase estimation on LJ-Speech dataset

Model MOS WV-MOS # Params (M)

Ground Truth 4.51 ± 0.05 4.23 -

FFC-AE-V0 (ours) 4.47± 0.04 4.11 0.4
vanilla UNet 4.31± 0.04 3.97 20.7
FFC-AE-V0 (abl.) 3.96± 0.08 3.81 0.7

Speech enhancement We compare the quality of the pro-
posed models with strong baselines on both benchmarks. On
Voicebank-DEMAND, as it can be seen from Table 1, our mod-
els significantly outperform all the baselines by MOS and give
competitive results on objective metrics. On DNS benchmark
( Table 2) our models have better quality than all the competi-
tors considering DNS-INDOMAIN test set and perform com-
petitively with FullSubNet [24] (one of the top-ranked models
in DNS Challenge 2021) in terms of MOS on DNS-BLIND test
set.

Noteworthy, our models performed better or comparably
with the closest baselines FullSubNet and DEMUCS on DNS-

BLIND set without employing dynamic data synthesis, rever-
beration simulation and augmentation techniques. Thus, DE-
MUCS and FullSubNet models which employ these techniques
were in an advantageous position from this point of view. We
believe that the generalization of our models to the blind test
set can be further improved, considering more advanced data
generation pipelines.

4. Conclusions
In this paper, we adapted the fast Fourier convolution opera-
tor for speech enhancement problems. We observe that neural
architectures built upon fast Fourier convolution significantly
outperform vanilla convolution-based architectures in terms of
quality of speech enhancement, phase estimation and parameter
efficiency. In general, the proposed architectures deliver state-
of-art results on speech denoising benchmarks, being signifi-
cantly smaller than the baselines. Future work should consider
extending the results to real-time streaming scenarios. Impor-
tantly, we believe that the success of fast Fourier convolution
can be translated to other speech processing tasks, such as voice
conversion and neural vocoding.
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